Lecture 2

Basic Radiometric Quantities. The Beer-Bouguer-Lambert law.

Concepts of extinction (scattering plus absorption) and emission.

Schwarzschild’s equation.

Objectives:

|. Basic introduction to electromagnetic field: Definitions, dual nature of electromagnetic
radiation, electromagnetic spectrum,

2. Basic radiometric quantities: energy, intensity, and flux.

. The Beer-Bouguer-Lambert law. Concepts of extinction (scattering + absorption) and

[

emission. Optical depth.

4. Simple aspects of radiative transfer: Schwarzschild’s radiative transfer equation,

Reguired reading:

Lo2: 1.1, 1.4




1. Basic introduction to electromagnetic field.

Electromagnetic radiation is a form of transmitted energy. Electromagnetic radiation
15 so-named because it has electric and magnetic fields that simultaneously oscillate n

planes mutually perpendicular to each other and to the direction of propagation through
space.
e Radiation properties: Intensity, Phase, Polarization.

e Radiation depends on: Frequency, Space, Time, Direction.




» FElectromagnetic radiation exhibits the dual nature:

wave properties and particulate properties.

»  Wave nature of radiation: radiation can be thought of as a traveling

wave.
Electromagnetic waves are characterized by wavelength (or frequency) and speed.

g 07 B 108 /e
e The speed of light in a vacuum: ¢ = 2,9979x 10" m/s = 3.00x10" m/s

The Spectrum

e Wavelength ) related to frequency  and speed of light ¢ by
[

A=— ¢=20998x 10" m/s
v

e Wavenumber v is number of waves in a given length (usually 1 cm) and 1s
proportional to frequency:

1 10000 em =" pm
= = =
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Example: 8-12 pm atmospheric window 1s 833-1250 cm ™",

We will mainly use wavelength and wavenumber. Wavenumber is used especially for molecular

absorption spectroscopy.



Wavelength, A, is the distance between two consecutive peaks or troughs in a wave.

Frequency, v, is defined as the number of waves (cyeles) per second that pass a given

point in space.

Wavenumber, v . is defined as a count of the number of wave crests (or troughs) in a

given unit of length.

Relation between A, v and vV :

UNITS:

Wavelength units: LENGTH.
Angstrom (A) : 1A= 1Ix10""m;
Nanometer (nm}: I nm=1x10" m;

Micrometer {[lm): 1 im = 1107 m:

Frequency units: unit cycles per second 1/s (or s

Wavenumber units: LENGTH™ (often in cm"}

'} 15 called hertz (abbreviated Hz)



Spectrum of electromagnetic radiation

Table 2.1 Relationships between radiation components studied in this course.

NOTE:

Name of Wavelength Spectral equivalence
spectral region, llm
region
Solar 0.1 - 4 Ultraviolet + Visible + Near infrared = Shortwave
Terrestrial 4 - 100 Far infrared = Longwave
Infrared 0.75 - 100 Near infrared + Far infrared
Ultraviolet 0.1 - 0.38 Near ultraviolet + Far ultraviolet

UV-A + UV-B + UV-C + Far ultraviolet
Shortwave 1 -4 Solar = Near infrared + Visible + Ultraviolet
Longwave 4 - 100 Terrestrial = Far infrared
Visible 038 - .75 | Shortwave - Near infrared - Ultraviolet
Near infrared .75 - 4 Solar - Visible - Ultraviolet

[nfrared - Far infrared
Far infrared 4 - 100 Terrestrial = Longwave = Infrared - Near infrared
Thermal 4 - 100 Terrestrial = Longwave = Far infrared

-1
viem™] = 10000cm g EXAMPLE: §-12 um atmospheric window is 833-1250 ¢m’™
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» Particulate nature of radiation:

Radiation can be also described in terms of particles of energy, called photons.

The energy of a photon is given by the expression:

E photon =h Vv =h c/A=hcv 12.2],

where ft is Plank’s constant (/i = 6.6256x 1074 ] 5).

NOTE: Plank’s constant & is very small!
o Eq. [2.2] relates energy of each photon of the radiation to the electromagnetic
wave characteristics (v and A).

e The quantized nature of light 1s most important when considering absorption
of radiation by atoms and molecules.



2. Basic radiometric quantities.

Solid angle is the angle subtended at the center of a sphere by an area on its surface

————
numerically equal to the square of the radius

i
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UNITS: of a solid angle = steradian (sr)

< . >

A differential solid angle can be expressed as

d0 =22 — Gn(0)dodo .

.l"

using that a differential area is

do = (rdf) (rsin(6) dd)

Change of variables: use (u,¢) for directions, pu = cos  d() = dudep
Solid angle for all directions: Q) = (2™ [l dude = 4
=1 (6 = 0)is towards zenith, p = —1 (# = 180) 1s towards nadir,

=0 (6 = 90) is towards horizon.

Warning: sometimes we will keep g > 0 even for downwelling.




[llustration of differential solid angle d€! in spherical coordinates for cone of radiation around

zenith angle # and azimuth angle ¢.

. A differential solid angle can be expressed as
. rsin 8dg

; rd@ d) = “‘(3 =sin( 8 )d8d g ,

i
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using that a differential area 1s

da = (rdb) (rsin(8) di)

EXAMPLE: Solid angle of a unit sphere = 41

EXAMPLE: What is the solid angle of the Sun from the Earth if the distance from the
Sun from the Earth is d=1.5x10% km and Sun’s radius is Ry = 6.96x10° km.

QO = m’f: — 67610 s

L
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Intensity

Intensity (or radiance) is defined as radiant energy in a given direction per unit time
per unit wavelength (or frequency) range per unit solid angle per unit area perpendicular

to the given direction:

dE

[, = - a [2.3]
cos(8 )dQdtdAdA

;. 1s referred to as monochromatic intensity.

*  Monochromatic does not mean at a single wavelengths A, but in a very narrow

(infinitesimal) range of wavelength A centered at A.
NOTE: same name: intensity = specific intensity = radiance

UNITS: from Eq.[2.3]:

(J sec”! st m'zum'l}= (W s m™ um"}



Properties of Intensity

In general, intensity is a function of the coordinates (7 ), direction ( Q).
wavelength (or frequency). and time. Thus, it depends on seven independent
variables: three in space, two in angle, one in wavelength (or frequency) and one
in time.

Intensity, as a function of position and direction, gives a complete description of
the electromagnetic field.

It intensity does not depend on the direction, the electromagnetic field is said to
be isotropic. If intensity does not depend on position the field 1s said to be

]]DHID}__‘.E‘]]E‘GIL‘&.



Flux or irradiance

Flux (or irradiance) is defined as radiant energy in a given direction per unit time
per unit wavelength (or frequency) range per unit area perpendicular to the given
direction:

dE

F =
Y didAd A 241

UNITS: from Eq.[2.4]:

(] sec”! m™? um" b ={W m um"}

From Eqs. [2.3]-[2.4]: F, = _[f ; COS(8)d&2 [2.5]

£l
Thus, monochromatic flux is the integration of normal component of monochromatic

intensity over some solid angle.



¢ Monochromatic upwelling (upward) hemispherical flux on a horizontal plane 1s
the integration of normal component of monochromatic intensity over the all

solid angles in the upper hemisphere. Eq. [2.5] in spherical coordinates gives:
2rx
j If (6. )cos( 8 )sin( 8 )dBdep = I If’ (u,oydude
0

where g = cos(6)

Example: The normal incidence spectral solar flux at 0.5 pm at the orbit of the
Earth is 1962 W m™2 gm™% 1If the solar flux is converted to isotropic radiance
with a reflective diffuser having 100% efficiency, what is the radiance?

Since isotropic radiance is independent of direction, the hemispheric flux 1s

| ,
=1, [J fj pdudé = 7y
L
Therefore the radiance is I, = (1962 W m~=2 pm=!) /7 = 625 W m=2 sv=! pm~!
Monochromatic net flux is the integration of normal component of monochromatic

intensity over the all solid angles (over 4m). Net flux for a horizontal plane 1s the

difference in upwelling and downwelling hemispherical fluxes:

T

Fros = F —F} J JI (u, e ydudoe
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Spectral integration

« Integral (or total) intensity [/ and flux /- are determined by integrating over the

wavelength the monochromatic intensity and flux, respectively:
() e ]
I=(1,d2 F = [F,da
0 0

¢ Intensities and fluxes may be per wavelength or per wavenumber. Since intensity

across a spectral interval must be the same. we have f,; dA = trl. dV and thus

Aﬂ:‘ra l?
dv Ve

=1 ]°

A

[, =1

P

EXAMPLE: Convert between radiance in per wavelength to radiance per wavenumber
units at A = 10 um. Given I; =99 W m’™ sr"um". What is Iy ?

v = (9.9 W m™ sat"',um" ) (10 tm) 107 em) =0.099 W m™? s (em™)y!



Radiance vs. Flux

Constancy of intensity: If radiation is not interacting with matter then radiance

is constant along a ray.
Solar flux depends on distance from sun (inverse square law):

0

?""‘
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Flux decreases with distance squared because area of a sphere centered on the sun
grows as 72 and power crossing a sphere must be constant.

But intensity of solar radiation is constant because I = F/(} and solid angle
subtended by Sun decreases as 1 /77,

From an extended source, both radiance and flux are constant for a transparent
medium. For example, the upward hemispheric flux from the moon’s surface is
constant with height because the solid angle subtended by the surfaces remains 27
until the curvature of the moon becomes important.



The Beer-Bouguer-Lambert Law. Concepts of
Extinction (scattering+ absorption) and emission.

¢«  Extinction and emission are two main types of the interactions between an
electromagnetic radiation field and a medium (e.g., the atmosphere).

General definition:

Extinction is a process that decreases the radiant intensity, while emission increases it.

NOTE: “same name™: extinction = attenuation

Radiation i1s emitted by all bodies that have a temperature above absolute zero (O K)

{often referred to as thermal emission).



» [Extinction is due to absorption and scattering.
Absorption is a process that removes the radiant energy from an electromagnetic field
and transfers it to other forms of energy.
Scattering is a process that does not remove energy from the radiation field, but may
redirect 1t.
NOTE: Scattering can be thought of as absorption of radiant energy followed by re-
emission back to the electromagnetic field with negligible conversion of energy. Thus,
scattering can remove radiant energy of a light beam traveling in one direction, but can be

a “source” of radiant energy for the light beams traveling in other directions.

The fundamental law of extinction is the Beer-Bouguer-Lambert law, which states that
the extinction process is linear in the intensity of radiation and amount of matter,

provided that the physical state (1.e., T, P, composition) 1s held constant.

NOTE: Some non-linear processes do occur as will be discussed later in the course.




Consider a small volume AV of infinitesimal length ds and area A4 containing
optically active matter. Thus, the change of intensity along a path ds is proportional to

the amount of matter in the path.

p S

[

dl; =—p,  L;ds 75

For extinction:

dl, =, J;ds g

For emission:

where B, is the volume extinction coefficient ( LENGTH™ j and J3 i1s the source

function.

¢ Inthe most general case, the source function J; has emission and scattering

contributions.



» Generally, the volume extinction coefficient is a function of position s.
(Sometimes it may be expressed mathematically as .4 (s), but s is often dropped).

NOTE: Volume extinction coefficient is often referred to as the extinction coetficient.

Extinction coefficient = absorption coefficient + scattering coefficient

)8;4 =)8m TP, [2.8]

NOTE: Extinction coefficient (as well as absorption and scattering coefficients) can be
expressed in different forms according to the definition of the amount of matter (e.g

k]

number concentrations, mass concentration, etc.) of matter in the path (see Lecture 4).

¢  Volume and mass extinction coefficients are most often used.
Mass extinction coefficient = volume extinction coefficient/density
. - . . . . _ _ 2 onr ok coel
UNITS: the mass coefficient is in unit area per unit mass (LENGTH™ MASS™). For

instance: {cm‘: {m Iw-r ), etc.



It p 1s the density (mass concentration) of a given type of particles (or molecules), then

JBU,!{ — )018,,1
B, =pB,; [2.9]

A

B., = Pk,

where the ﬁ""{,d 3 ﬁ""_\.j._ and k ; are the mass extinction, scattering, and absorption

coefficients, respectively.

NOTE: L02 uses kj for both mass extinction and mass absorption coefficients!



Extinction Cross-section

The extinction cross section of a given particle (or molecule) is a parameter that
measures the attenuation of electromagnetic radiation by this particle (or molecule).
In the same fashion, scattering and absorption cross sections can be defined.
UNITS: the cross section is in unit area (LENGTH?)

It N 1s the particle (or molecule) number concentration of a given type of particles (or

maolecules), then

;Bc-',;l = gc—',f. N
B, =0 N [2.10]
ﬁa.& — {}-a.ﬁ. ‘N'

where @, 2, Oy, and Oy 4 are the extinction, scattering, and absorbing cross sections,
respectively.

UNITS: Particle number concentration is in the number of particles per unit volume
(LENGTH?).



Optical Depth

e  Optical depth of a medium between points s; and s; i1s defined as

Tp(8508)) = jﬁ,ﬂ (s)ds 4—/1”'

UNITS: optical depth 1s unitless.

NOTE: “same name™: optical depth = optical thickness = optical path

o If B, (s) does not depend on position (called a homogencous optical path), thus
Bea(s)=<fa=and 7,(s,:5,)=< [, > (s, —5)=< ,{J’E,}& > §
For this case, the Extiction law can be expressed as

[, =1, exper)=1,expe<fj, , >s) [2.11]




Optical depth can be expressed in several ways:

T,(8,:5,)= J- B, ds = -\j.pﬁ:_ Jds = -\j.h-"crt,. L ds 212

e [fina given volume there are several types of optically active particles each with

ﬁ'm , etc., then the optical depth can be expressed as:

T, :Z jﬁf L ds :Z hjp{. B ds :Z ij}.J:,_ A5 o

where g and NV; 1s the mass concentrations (densities) and particles concentrations of the

i-th species.



4. Simple aspects of radiative transfer.

Let’s consider a small volume AV of infinitesimal length ds and areca A4 containing
optically active matter. Using the Extinetion law, the change (loss plus gain due to both

the thermal emission and scattering) of intensity along a path ds is
dl, ==f, Lds+f,,J ds
Dividing this equation by £, 1 ds, we find
d, _
=/, + J;

, 214
3 s [2.14]

Eq. [2.14] is the differential equation of radiative transfer called Schwarzchild’s
equation.

NOTE: Both I; and Jj are generally functions of both position and direction.



The optical depth is
T,(5:85)= J‘ﬁf.f: (s)ds

Thus

Using the above expression for

These are other forms of the differential equation of radiative transfer.

dT;. we can re-write Eq. [2.14] as

_fﬁi
dr.

A

==/, + J,

Or as

dl, 17,
dr,

I_.\_."

.




Let’s re-arrange terms in the above equation and multiply both sides by exp(-7y). We
have

_ &xpl ;f&)"ﬂﬁ Texp(—7,)1; = exp(—7;)/;
dt,

and (using that dfl(x)exp(-x)[=exp(-x)di(x)-exp(-x)I(x}dx) we find

—d|1, exp( -7,)]= exp( -1,)J,dr,

Then integrating over the path from 0 to sy , we have

— ja’[}f,‘ (5’]exp(—fﬂ(5|:5)]]: jexp(—rﬂ(slzs'] )J,dt,
{) 0

and
.'\'l

=1, ()= 1,(0)exp( =7, (5,:0) | = J.exp{ —7,(s,:5)J ,dT,

Thus
M

[,(s,)=1,(0)exp(=7,(5,:0)) = J.e:c:p(—rj_(xlz.s'))Jirfri

(0



and, using d I, = —ﬂm (5)ds | we have a solution of the equation of radiative

transter (often referred to as the integral form of the radiative transfer equation):

[,(s)=1,(0)exp(—7,(s5,:0)) + Jexp{—ri(ﬁﬂ-lz.a'))Jzﬁt,ids [2.16]
0

NOTE:

i) The above equation gives monochromatic intensity at a given point propagating in a
given direction {often called an elementary solution). A completely general distribution
of intensity in angle and wavelengths (or frequencies) can be obtained by repeating the
elementary solution for all incident beams and for all wavelengths (or frequencies).

ii) Knowledge of the source function J; is required to solve the above equation. In the
general case, the source function consists of thermal emission and scattering (or emission
from scattering). depends on the position and direction, and 1s very complex. One may

say that the radiative transfer equation is all about the source function.



Plane-parallel atmosphere

e For many applications, the atmosphere can be approximated by a plane-parallel

model to handle the vertical stratification of the atmosphere.

Plane-parallel atmosphere consists of a certain number of atmospheric layers each
characterized by homogeneous properties (e.g., T, P, optical properties of a given species,
etc.) and bordered by the bottom and top infinite plates (called boundaries).

e T[raditionally, the vertical coordinate 7 is used to measure linear distances in the

plane-parallel atmosphere:

z=s5cos(6)

X
where @denotes the angle between the upward normal and the direction of propagation of

a light beam (or zenith angle) and ¢ 1s the azimuthal angle.



Using ds = dz/cos(6), the radiative transfer equation can be written as

dl ,(z:6:¢)

Lz

cos(8) =—1,(z:0:9)+ J,(z:0:9)

Introducing the optical depth measured from the outer boundary downward as

Hl'u)—jﬁw )dz

and using fff)_ = _ﬁg_,l, (Z]dz and i = cos(8), we have

dl (7, 1L
uCED gy~ S wee) |
dt

Eq. [2.17] 1s the basic equation for the problem of radiative transfer in the plane-parallel

atmosphere



e Eq.[2.17] may be solved to give the upward (or upwelling) and downward (or

downwelling) intensities for a finite atmosphere which 1s bounded on two sites.

Upward intensity [,; isfor 120420 (or 00 <T/2):

. , : L. . o ;
Downward intensity [, isfor —1Su<0(or T/2<6 <)

[ T (0; 1. )

z=7Top \T/" =0

t f.{f"{r:—,u:r;o}
z=0 T=T
Bottom @l

fj_’{ T— Q)

Plane-parallel atmosphere.

NOTE: For downward intensity. \ is replaced by —J.



The radiative transfer equation [2.17] can be written for upward and downward

intensities:

; dI! (z:10:)

S P 4 O
17 =1 (T 1 0)— J (T 10 9) 12.18]

{

AL @)
| dt

A solution of Eq.|2.18a] gives a upward intensity in the plane-parallel atmosphere:

T, -7
!f(’r;,u:qp): lj(fl;y;gp)exp( _lﬂ—f}
+l— exp( —u} JJ('E’;;I:@]dT"

H H

[2.19a]




and a solution of Eq.|2.18b] gives a downward intensity in the plane-parallel

atmosphere:

]i

A

(T:-p30) = 1; (05— ;9 )exp( ——)

l T

+ — Jexp( -

Mo

T—7
U

!

T
17

——) J (¢ psp)d

[2.19b]



